Manufacturing Engineering Laboratory IT Testing Perspectives

James E. Fowler

Manufacturing Systems Integration Division

National Institute of Standards & Technology

Outline

- •IT Metrology
- Ongoing Testing Efforts
- New Testing R & D Efforts
- Potential IT Metrology Impacts

Metrology for Information Technology

- •NIST Internal Report (6025) developed by ITL, MEL, TS
 - Concludes: IT Metrology Valid Branch of Metrology
 - Analogs to Physical Metrology....
 - Validation -> Calibration
 - Differences from Physical Metrology....
 - -No recognized dimensioning system

Logical Relationships Among Metrology Concepts

Opportunities for Advancing IT Metrology

- Level of confidence in test results
 - need to realize traceability & characterize uncertainty for IT testing
- Interoperability testing
 - need better testing methods & interpretation of results
- Automatic generation of test code
 - need to reduce costs of generating test code & improve test coverage
- Software metrics
 - need to identify what's appropriate to test
- Algorithm testing
 - need algorithm performance measures to enable intercomparisons

Ongoing Testing Efforts in the Manufacturing Engineering Laboratory

- STEP Testing
- Algorithm Testing & Evaluation Program
- Infrastructure Evaluation

STEP Testing

POC: Simon Frechette

- Standard for the Exchange of Product model data (ISO 10303)
- STEP Application Protocols define what data is to be exchanged among what engineering systems, for what purposes, in what context
 - * AP203 (ISO10303-203) Configuration Controlled 3D Design
 - AP214 (ISO 10303-214) Core Data for Automotive Design Processes
 - † ... (~ 12 more)
- Commercial implementations available from all major computeraided design system vendors
- Abstract Test Suites are defined for each AP as part of the standard

STEP Conformance Testing

Pre-processor test (can you write a STEP file?)

Post-processor test (can you read a STEP file?)

STEP Conformance Testing: Web Site

Welcome to the NIST-ITI Test System (NITS)

Are you a registered user and want to do some work?						
Please login Name: Password: Let's Go!						
Update announcements click here! (last update - 7/8/97)						
Just want to browse?						
You can access many of the NITS resources as a publicuser without logging in. A good place to start is in the <u>public user's project</u>						
Want to start using the NITS tools?						
You'll be able to create, store, and retrieve your own private data But first you will need to register as a NITS user.						
NITS provides a protocol esting environment, acting as a harness for test tools and data. To learn more about main concepts and features, see the <u>overview of NITS</u> .						

NITS - bringing conformance testing to your desktop! Comments and questions -- send them here.

A public service of the National Institute of Standards and Technology and the Industrial Technology Institute

STEP Conformance Testing: Online Results

NITS PROTOCOL TESTING

Test Case Data

TEST CASE RESULT: Done

Preprocessor test case: ab1g Verdict: Fail

Test Case Specification: /ab1.html

Your submitted part 21 file: /gasket1.p21

Structure analysis: ... Done ... FAIL
Semantic analysis: ... Done ... PASS

STEP Rule Evaluator v 1.8.9 for AP 203 (IS)

Reading data from /gasket.p21

ERROR: ENTITY #9043 Uncertainty_Measure_With_Unit

Missing attribute values

ERROR in EXCHANGE FILE: incomplete instance #9043

total violations = 0

total parse errors = 1

total parse warnings = 0

elapsed time: 5.348 seconds

STEP Interoperability Testing

Interoperability Testing of STEP Applications

STEP Interoperability Testing: AutoSTEP

Interoperability Testing AIAG AutoSTEP Production Pilot Project

STEP Testing Summary

- Methods development
- Tool development
- Facilitating industry-led certification program
- \$ saved by CAD vendors for early translator error detection
- Interoperable STEP implementations
- Production use of STEP

Algorithm Testing & Evaluation Program POC: Craig Shakarji

There is unknown measurement uncertainty associated with software embedded in coordinate measuring systems

coordinate measurement system dimensional measurements - curve/surface fits **Data Analysis** Software coordinate data

Algorithm Testing Program

Algorithm Testing Architecture

Algorithm Testing Summary

- First calibration service in the U.S. for dimensional metrology software
- ATEP-CMS available as Special Test Service
- Test objectives codified in standards
- •Web resource soon available

Infrastructure Evaluation POC: Neil Christopher

- Test implementations of manufacturing software architectures in real and/or simulated environments
 - * SEMATECH CIM-Framework
 - Honeywell Advanced Process Control Framework
- Collaboration with CMU Software Engineering Institute to test CORBA for real-time performance
- Developed Manufacturer's CORBA Interface Testing Toolkit (MCITT) for testing of software interfaces based on CORBA

Infrastructure Evaluation: MCITT

POC: David Flater

How can we test interfaces without implementing the entire system?

Infrastructure Evaluation: MCITT

- Interface Testing Language
- Code generation

New Testing R&D Efforts

- Testability of Interaction-Driven Manufacturing Systems (Manufacturing Engineering Laboratory)
- Standards & Validation for Bioinformatics
 (Chemical Science & Technology Laboratory)
- •Strategies for Testing Software-Embedded Systems (Electrical & Electronics Engineering Laboratory)

Testability of Interaction-Driven Manufacturing Systems

POC: David Flater/K.C. Morris

New System Characterization

"Large and complex distributed systems of systems" --Genevieve Houston-Ludlam, Program Chair, 16th Int'l Conf. on Testing Computer Software

Yesterday's "systems" are today's "components"

• Goals:

- find or develop tools and techniques:
 - —for specifying interactiondriven manufacturing systems
 - —for locating faults in ...
 - —for testing conformance of ...
 - —for designing systems with improved testability
- First Year Results
 - Characterized "the problem(s)"
 - Surveyed potential solution approaches
 - Identified the unsolved problems
 - Set future directions

Standards & Validation for Bioinformatics POC: Gary Gilliland/Lynn Young

Basic Local Alignment Search Tool

• Goals:

- Analyze bioinformatics algorithms
- Analyze genome data
- Develop software useful to the biology community
- Acquire Protein Data Bank (PDB)
- First Year Results:
 - * BLAST Formal Analysis
 - Sequence Structure Interface (Sesti)
 - Research Collaboratory for Structural Bioinformatics
 - Graphic visualization of DNA walks

Strategies for Testing Software-Embedded Systems

POC: Gerard Stenbakken/Michael Souders

• Goals:

- Develop Expertise in Testing Systems
- Help Industry Delineate Problems
- Improve Analysis Tools
- First Year Status:
 - Investigating Expectation Maximization Approach for:
 - —Updating Models with Missing Data
 - —Help in Searching ContinuousTest Spaces
 - —Theoretical Basis for Minimum Amount of Information

Potential IT Metrology Impact Areas

	STEP Testing	ATEP	Infra. Eval	TIMS	SW Embedded Systems	Bioinfor matics
Uncertainty/Traceability		X		X	χ	
Conformance/Interoperability	X		χ	X		
Automatic Test Generation		X	X	X	X	Х
Software Metrics	X	х	X	X	Х	X
Algorithm Testing		X			X	Х